
Adventures in Binary Golf

Who Am I?
yuu

@netspooky on twitter/github

n0.lol

thugcrowd

Talk Outline
File Format Hacking

Various Case Studies

(ab)Use Cases

Approaches to ELF and PE files

Further Reading

A Brief Overview of File Format Hacking
Extensive research has been done into File Format Hacking

Smallest Possible Files

- mems/small: https://github.com/mems/small

Polyglots, Chimeras et al.

- PoC||GTFO 7.6 - Abusing File Formats

- https://www.alchemistowl.org/pocorgtfo/pocorgtfo07.pdf

- https://github.com/ViGrey/gb-nes-pdf-html-zip

https://github.com/mems/small
https://www.alchemistowl.org/pocorgtfo/pocorgtfo07.pdf
https://github.com/ViGrey/gb-nes-pdf-html-zip

ThugCrowd: badge.gif (2018)
https://thugcrowd.com/chal/badge.gif

Part of a challenge to win a custom Defcon badge. See “spiderman frozen elsa” (2019) for
another example of a polyglot used in a ThugCrowd challenge [vtt/jpg].

Created with a hex editor.

Triple Polyglot (with other fun stuff thrown in)

- Relevant files: GIF, Gameboy ROM, Zip Archive

Binwalk Output:

https://thugcrowd.com/chal/badge.gif

Badge.gif Internals

What is Binary Golf?
Binary Golf is the practice of crafting the smallest possible binary that still performs a
given function.

Can be created with or without a compiler, generally created without one.

Tools include:

- nasm (solid), or any other assembler you like

- hex editor (for fixing mistakes)

- gcc (good luck, it’s possible tho, shoutout Anonymous_)

(ab)Use Cases
- Anti-Debug/Anti-Forensics

- Exploit Prototyping

- AV / Detection bypass

- File upload filter bypass

- Fuzzing

- Malware loaders

- Fun!

Approaches to Binary Golf
- Examining binary file structure

- Analyzing the specification/RFC/dev notes

- Analyzing open source parsers

- (Slowly?) removing things you don’t need

- Fuzzing suspected areas of interest

- Binary Diffing different files to better understand the format

ELF64 (Linux)
ELF files have a lot of extra stuff in them that aren’t needed. These include:

- Debug Symbols

- Unnecessary Sections and Headers

- Padding

- Other info needed by parsing tools

All you really need (for a standard ELF binary) is:

- ELF Header

- Program Header

- Code to execute

Note: Shared Objects and Kernel Modules require some additional parts!

Tiny ELF Files
Prior art (32 bit): https://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

- Doesn’t run on x86_64 Linux

- The syscall interface is different now

64 bit Tiny ELF examples: https://github.com/netspooky/golfclub

Updated for modern Linux systems

See ELF Binary Mangling Parts 1-3

https://medium.com/@dmxinajeansuit/elf-binary-mangling-part-1-concepts-e00cb1352301

https://medium.com/@dmxinajeansuit/elf-binary-mangling-pt-2-golfin-7e5c82bb482c

https://medium.com/@dmxinajeansuit/elf-binary-mangling-part-3-weaponization-6e11971108b3

https://www.muppetlabs.com/~breadbox/software/tiny/teensy.html
https://github.com/netspooky/golfclub
https://medium.com/@dmxinajeansuit/elf-binary-mangling-part-1-concepts-e00cb1352301
https://medium.com/@dmxinajeansuit/elf-binary-mangling-pt-2-golfin-7e5c82bb482c
https://medium.com/@dmxinajeansuit/elf-binary-mangling-part-3-weaponization-6e11971108b3

Golfing with ELF
Strip all unnecessary sections
and headers.

Overlay program headers with
ELF header.

Store code and other data in
unused sections of the headers.

Reuse values from the headers
for other things.

Short jumps to locations within
the header.

Load binary at 0x100000000 so
that e_entry and p_type match.

https://github.com/netspooky/golfclub/blob/master/linux/bye.asm

https://github.com/netspooky/golfclub/blob/master/linux/bye.asm

Case Study: golf.so
A recent challenge in a CTF to create a shared object under 1024 bytes that pops a shell:

https://teamrocketist.github.io/2020/04/20/Misc-PCTF2020-golf-so/

Shared Objects have much more strict checking. Techniques of putting code at 0x04:0x0F and
other locations do not work here.

Invoke using LD_PRELOAD

https://teamrocketist.github.io/2020/04/20/Misc-PCTF2020-golf-so/

golf.so.2
Determined the needed sections:

- DT_STRTAB

- DT_INIT

- DT_SYMTAB

Overlayed with program headers

Used nasm to create the final binary

Resulting file size: 185 bytes

Case Study: PE
Quirks with PEs differ drastically between Windows versions

TinyPE is already a well known thing

PE files must be >=268 bytes on Windows 7/10

Overlay technique for headers is used

REFS:

- https://github.com/rcx/tinyPE

- https://github.com/corkami/pics/tree/master/binary/pe101

- http://www.phreedom.org/research/tinype/

https://github.com/rcx/tinyPE
https://github.com/corkami/pics/tree/master/binary/pe101
http://www.phreedom.org/research/tinype/

Exploring Code Caves
Unused header sections means that values
can be placed in these locations and
hopefully not interfere with binary
loading/execution.

Short jumps allow us to easily hop around
the header in these small sections.

This process can be manual or fuzzer
guided.

Identified Caves:

Launching calc.exe
Used PEB -> WinExec technique

Shellcode was a bit longer than could fit.

Determined places in the header that code could go.

Performed short jumps around the header before landing in the
code section: jump0-jump6

https://n0.lol/a/pemangle.html

https://n0.lol/a/pemangle.html

Defeating Detection
Since TinyPE is already a known technique for obfuscation, there are detections for it on
Virus Total, and other scanners, as well as Yara Rules.

Detections for TinyPE were defeated by changing one bit in e_cblp.

Defeating Detection
Yara detection is bypassed.

New yara detection does catch
this PE. (For now...)

See sshell’s writeup on
fuzzing VT detection engines.

Lessons Learned
You don’t need huge bloated software to run binary programs in 2020.

File parsers generally lazy and need only a few things to consider a file valid.

Most debuggers and binary parsers kinda suck at understanding minified binaries still.

Even with a tiny binary, you can still bypass detections.

Binary Golfing gives you complete control over every single byte in your file.

Other Resources
- Radare2 - Great for debugging weird stuff

- https://github.com/corkami

- http://fileformats.archiveteam.org/wiki/Main_Page

- curl -sL https://n0.lol/i2ao/intro

https://github.com/corkami
http://fileformats.archiveteam.org/wiki/Main_Page
https://n0.lol/i2ao/intro

