
Hella Booters
Why IoT Botnets Aren’t Going Anywhere

Who Am I?

• Senior Reverse Engineer @ *REDACTED*
• Primarily works on embedded devices, firmware, ICS, and proprietary
network protocols.
• Online as netspooky / yuu
• Contributes OSS tooling and other errata for threat intel, reverse
engineering, and offensive security.

Why do this talk?

• IoT botnets are still incredibly prevalent.
• We are all affected by IoT botnets whether we like it or not.
• People don’t take IoT botnets as seriously (kiddie stuff etc.)

• Spent a good amount of time collecting malware sources
• Studied commonly exploited vulnerabilities and why they were so prevalent

• Wanted to inform others on the impact of certain technology choices
• Wanted to propose some ideas for how to address issues

Outline

IoT Botnet History A brief overview of IoT Botnets and Modern History

Botnet Scene An examination of the botnet scene

Architecture A discussion of botnet architecture and how they spread

Vulnerabilities Overview of exploited vulnerabilities and their underlying causes

Moving Forward Things we can do to lessen the impact of IoT Botnets

IoT Botnet History

What is an IoT Botnet?
A network of hacked IoT devices, mainly comprised of internet connected devices, routers, set top boxes, webcams, etc.

Used primarily for DDoS

Sometimes used for cryptocurrency mining and tunneling/proxying traffic.

 .___________.
 | |
 +---+ ___________. | | /~\ |
 | import shodan | / __ __ /| | _ _ |_| |
 | api = shodan.Shodan(SHODAN_API_KEY) | / /:/ /:/ / | !________|__!
 | try: | / /:/ /:/ / | |
 | results = api.search('linksys') | / /:/ /:/ / |____________!
 | print('Results found: %s' % results['total']) | / /:/ /:/ / |
 | for result in results['matches']: --+ / /:/ /:/ / |
 | print('IP: %s' % result['ip_str']) \ / ~~ ~~ / |
 | print(result['data']) ___\ |~~~~~~~~~~| |
 | print('') +-----------+ | :: | /
 | except(shodan.APIError, e): | | == | /
 | print('Error: %s' % e) | | :: | /
 +----------------------------------+ | :: | /
 | :: @ | /
 !__________!/

Origins - BASHLITE (2014)
Origins of modern IoT botnets can be traced back to BASHLITE (AKA
so many things: lulzbot, Torlus, Lizkebab, LizardStresser, Ballpit,
Gafgyt, and a few other names), a botnet that spread by exploiting
shellshock vulnerabilities in Busybox on various devices. Note: There
were many different bots that were distributed during this time,
Kaiten (IRC based), and a number of perl based “shell bots”. [1]

The source code was leaked in 2015, and many people began
modifying it.

These botnets came to be known as “QBOT”, which is unrelated to the
“Qakbot” banking malware.

New devices with unpatched shellshock vulns still appear online to
this day.

Mirai (2016)
Mirai first appeared in August 2016. The streamlined command and control
structure allowed for much more stable management and operation of the
botnet. [2]

Mirai’s codebase was far more modular, using multiple files and
standardized functionality that made it easily modifiable by even the most
novice of botnet operators. [3]

It also included an SQL server for the backend, which made user
management, roles, and permissions for running the botnet much easier.

Pictured: Mirai Author Anna-senpai

Other IoT Botnets
Satori/F-Bot/Okiru: A well known Mirai fork that was more actively developed and
contained far more advanced evasion and propagation techniques than others.
Author recently jailed. [4]

BrickerBot: A destructive botnet that promised to “brick” IoT devices. Various
iterations. [5]

Kaiji: Golang based, SSH Bruteforcer, Installs Rootkit [6]

Axis-R: A rewrite of the QBot style botnet, written in C, modular.

Various bitcoin miner botnets (Trinity, etc)

Various botnets now targeting FPGAs and more exotic architectures [7]

Botnet Activity Growth
Similarly to QBOT’s growth and usage, Mirai variants began popping up all over
once the source code was leaked online.

This spawned a large marketplace for people to sell “spots” on the botnet, as
well as affiliate programs and incentives for supporting the botnet’s growth.

The popularity of “booting”, or knocking people offline, spread rapidly in the
gaming community and beyond, as a method of settling disputes.

Botnet Scene

The scene at a glance
Entire communities dedicated to specific botnets and groups, usually
communicating via Discord, Forums, or IRC.

Advertising is done on virtually every social media platform.

“Booter” time is sold to customers for DDoS, either through a web panel
(web stresser) or through a telnet interface on the C2.

Distribution: Sources
Botnet sources are usually distributed in archive files (zip, rar, tar.gz) and are
sold for around $50-$300 USD.

Authors typically change very little of the actual base source code, usually just
changing some ASCII art, variable names, and sometimes adding new exploits.

Sometimes exploits themselves are sold, but many of them are ripped straight
from exploit-db (and are frequently backdoored).

When authors scam, rip-off, or are deemed untrustworthy by other users, their
source codes are leaked (sometimes in grandiose fashion).

Pictured: Botnet author after a long day on exploit-db

Distribution: “Spots”
The primary source of revenue is selling botnet “spots”, which are user accounts with a
set number of “credits” that can be used to launch DDoS attacks against different IPs.

These spots are typically sold in plans, such as:

- Weekly
- Monthly
- Lifetime

Lifetime typically means for the duration of the botnet’s lifetime, which may or may not
last beyond the other two plans.

More enterprising operators may have a full on UI, known as a webstresser, which can be
accessed via a browser, rather than through telnet.

Some people act as resellers, and get a cut of the sales of botnet spots / booter time.

Who runs a botnet?
IoT botnet operators typically (based purely on
observation):

- Are young, somewhat experienced with
computers

- Learn through YouTube and text files
- Have no clue what they're doing

More sophisticated operators might:

- Have a webstresser or an API for their botnets
- Use cryptocurrency for transactions
- In some cases, use their botnets for additional

purposes like proxying traffic and selling that

Pictured: Botnet operator putting the finishing touches on their new setup.

Why Run An IoT Botnet?
Money: Operators can likely earn decent money for renting botnet spots.

Attention: Botnet operators typically seek attention for their botnets, which can
come back to bite them.

Supply & Demand: “Booting” has been steadily increasing in popularity since
the rise of IoT botnets.

Revenge: Botnet operators can get revenge for supposed wrongdoing of others.

Inspired By Past Attacks: There have been so many with global impact, people
want a piece of the pie.

Also, it’s easy AF.

Architecture

Architecture over Time

Early botnets used standalone bot files, and C2 files.
(QBot/P2P botnets)

Some used older methodology like IRC for Command and
Control.

Mirai modernized the C2 with a Golang based server, using
MySQL for a backend.

Web stresser front ends also added a bit of abstraction that
modernized the approach.

Lifecycle of an IoT Botnet Setup and Usage
- Person sets up a C2 on a more lax VPS host
- Scans for vuln devices or uses a list of known

vuln devices
- Gets a few bots
- Advertises spots on their botnet
- People use it and abuse it

Takedown
- Bots eventually get noticed and their C2 gets

taken down
OR

- Someone else’s botnet starts kicking their bots
from systems

- Eventually the botnet loses it’s power

Then the cycle continues

King of the Hill Game
Botnets are a “King of the Hill” game, very territorial
and ephemeral.

Most of the time, everyone who touches the device
has root access, with no real way to re-configure
the device.

This means that every bot only lasts as long as it
can before it is inevitably kicked off.

No real repercussions.

Pictured: Operator watching their bot count drop.

Evasion

There are varying levels of simplistic evasion coded into bots, but
these are typically not to hide from things like AV or firewalls.

Mainly used to evade other botnet authors.

Techniques:

- Process Masking (eg. Pretend to be Dropbear or some other
system process)

- Hide in lesser known areas of the file system

- Hiding backup bots in other locations

Bot Killing
Bots will sometimes have hardcoded lists of known bot names, which they
use to attempt to remove existing bots on a given system.

Some most nearly-all bots and c2s have silly vulnerabilities that make them
really easy to knock offline.

These techniques are largely under utilized.

Non-Live Demo: C2 Killer

Non-Live Demo: Inhale
Created this tool to help track botnet binaries

Used for fast static analysis and classification

Updates coming soon (API, telfhash, key extraction)

https://github.com/netspooky/inhale

https://github.com/threatland/tl-bots

https://github.com/netspooky/inhale
https://github.com/threatland/tl-bots

Vulnerabilities

Peering Into The Void

What types of vulns are exploited?
• Weak Auth / Auth Bypass

• Command Injection

• Common Exploits in specific services and libraries (Realtek uPNP,
GoAhead, ThinkPHP)

• More Rare: Binary exploits

Other vectors include previously compromised devices, eg. scanning with
recovered creds for bots

Most Targeted Devices
Looked at vulns that were leveraged by
various botnet sources.

Not Included: Telnet/SSH Bruteforce,
Non-IoT Vulns

Many vulns aren’t even properly tracked,
eg CVE or vendor acknowledgement.

When a new exploit comes out, bot
scanners start up shortly after and
attempt to use it to load bots.

Infection Spillover
IoT Malware families, particularly Mirai, run on the most diverse array of
architectures. Due to extensive cross compiling.

This means that they can also infect other hosts that aren't IoT just the same.

Commonly exploited vulns include Drupalgeddon, Apache Struts, Android ADB, and
various database exploits.

Why are these devices so easy to exploit?
Vulnerable Libraries / Software

Easy to guess default passwords

Devices by default listening on the open internet

Giant lists of vuln devices are passed around online

Insufficient or non-existent security practices in development

Firmware Vulns
Basic security practices on a binary level aren’t being taken by many
major vendors.

Regression Analysis shows that firmware overall is not improving
from a security perspective, based on data from 2003-2018.

Analysis of Firmware Vulns by CITL [8]

Why is firmware so difficult to maintain?
• Rearchitecting cost

• Locked into vendor contracts, third party libraries and dependencies

• Unsupported chips and hardware, outdated toolchains

• Hardware constraints

• The need to maintain backward compatibility

• Lack of a dependable update pipeline for end users and devices

• Poor communication channels with end users

• Vendors might not have any security or bug reporting mechanisms in place

• Lack of modern security measures like secure boot, binary hardening, and code signing

Pictured: Firmware dev angry at chip vendor’s documentation

Why do we see some of the older stuff still working?
There are still Qbots out there, and they still work! [9]

This phenomenon is rarer in other classes of malware because there's really no patch,
so each time there is a new vuln, all it does is add more devices to the pool.

Moving Forward

What can we do?
Only can fix by introducing better firmware practices by meeting developers where they’re at

Vendors: Invest in developer training, establish best practices and create security testing
pipeline per commit

Encourage researchers to find vulns and disclose them properly

Can mitigate existing vulns by encouraging safer use of IoT devices

Establishing Best Practices
Auditing your development cycle

Depends on what you’re building

OWASP/Cheatsheets https://github.com/OWASP/CheatSheetSeries

CIS Benchmarks https://www.cisecurity.org/cis-benchmarks/

Consultants

https://github.com/OWASP/CheatSheetSeries
https://www.cisecurity.org/cis-benchmarks/

Vuln Disclosure
Allow researchers to disclose vulns! Don’t sue or ignore! https://disclose.io

Establish a security contact and listen to emails. https://securitytxt.org

Work with researchers who bring issues up, they want to help you.

Have some open channel with your customers to get word out about vulns.

These are elements of a Vulnerability Disclosure Program

Pictured: What hackers really want.

https://disclose.io
https://securitytxt.org

Community Suggestions
- Automatic Updates / Better update pipeline

- Vuln disclosure program "Don't sue people who report bugs!"

- Regular audits and code review process

- Have security connections with ODM/OEMs

- "Make security a named person's problem", allocate security
budget

- "Ask yourself if your device truly needs to be on the internet"

- No default/hardcoded/backdoor credentials

- Put security into your user journey

- Default settings should be sane / with security in mind

- Do risk assessments and threat models for the user, the
device, and your company

- Products should have a fair "shelf life" before EOL

- Use modern tool chains to build firmware and applications

- Make use of hardware / chip level security features

- Minimize attack surface

- Sign FW updates

- Follow best practices, Don't reinvent the wheel

https://twitter.com/netspooky/status/1289606589121359872

https://twitter.com/netspooky/status/1289606589121359872

Final Thoughts
• Make it less easy for people to run botnets.

• The supply is already there, and the demand is great

• Botnet authors are getting smarter, people are using the messy botnet
landscape to take control

• New architectures and devices are always being targeted, if you don’t act soon,
your new product will be DOA

Note: Q&A will be done in the Defcon Discord https://discord.gg/defcon or you can
talk to me on Twitter @netspooky

https://discord.gg/defcon

Shoutouts
Safari Zone Crew / Threatland / ThugCrowd

Hermit

Andrew Morris / GreyNoise

Mudge/CITL

Ilya - Check out his IoT Village talk on emulating IoT devices and malware with
Docker and Qemu https://www.youtube.com/watch?v=ALn0hUxNszI

0xdade for the theme song

https://www.youtube.com/watch?v=ALn0hUxNszI

Citations
[1] https://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/
[2] https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
[3] https://github.com/threatland/TL-BOTS/tree/master/TL.MIRAI/MIRAI.OriginalSource
[4] https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html
[5] https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
[6] https://www.intezer.com/blog/research/kaiji-new-chinese-linux-malware-turning-to-golang/
[7] https://n0.lol/a/miraiexotic.html
[8] https://cyber-itl.org/2019/08/26/iot-data-writeup.html
[9] https://imgur.com/a/CtHlmBE

https://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://github.com/threatland/TL-BOTS/tree/master/TL.MIRAI/MIRAI.OriginalSource
https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html
https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
https://www.intezer.com/blog/research/kaiji-new-chinese-linux-malware-turning-to-golang/
https://n0.lol/a/miraiexotic.html
https://cyber-itl.org/2019/08/26/iot-data-writeup.html
https://imgur.com/a/CtHlmBE

